Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy
نویسندگان
چکیده
Nasal regions of the non-mammalian cynodonts Massetognathus, Probainognathus, and Elliotherium were reconstructed from micro-computed tomography scans and compared with scans and published accounts of more derived forms, including Brasilitherium, Morganucodon, Haldanodon, and extant mammals. The basic structure of the modern mammalian nose, already present in non-mammalian cynodonts of the Early Triassic, underwent little modification during the Triassic. A respiratory chamber opened into a nasopharyngeal passage through an enlarged primary choana bordered posteriorly by a transverse lamina that formed the floor to a more posterior olfactory chamber. Cartilaginous respiratory turbinals initially provided a surface for evaporative cooling during periods of increased activity in the exceptionally high ambient temperatures of the Triassic. A similar mechanism for heat loss is present in extant crocodilians, squamates, and mammals. In the Late Triassic and Early Jurassic non-mammaliaform cynodonts (Elliotherium) and mammaliaforms (Morganucodon), the pterygopalatine ridges behind the hard secondary palate extended ventrally and formed the lateral walls to a narrow nasopharynx, as pterygoid hamuli do in extant mammals. Ridges in this position suggest the presence of a palatopharyngeus muscle in late non-mammaliaform cynodonts that could hold the larynx in an intranarial position during rest or low activity levels to prevent inhaled air from entering the oral cavity, thus allowing cartilaginous respiratory turbinals to assume an additional role as temporal countercurrent exchange sites for heat and water conservation. Ossification of respiratory turbinals in mammals enhanced their efficiency for conserving heat and water at rest, as well as their ability to dissipate heat during thermal stress. Citation for this article: Crompton, A. W., T. Owerkowicz, B.-A. S. Bhullar, and C. Musinsky. 2017. Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: speculations on the evolution of mammalian endothermy. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1269116.
منابع مشابه
Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy.
The structure and function of the nasal conchae of extant reptiles, birds, and mammals are reviewed, and the relationships to endothermy of the mammalian elements are examined. Reptilian conchae are relatively simple, recurved structures, which bear primarily sensory (olfactory) epithelium. Conversely, the conchae, or turbinates, of birds and mammals are considerably more extensive and complex,...
متن کاملA new mammaliaform from the early Jurassic and evolution of mammalian characteristics.
A fossil from the Early Jurassic (Sinemurian, approximately 195 million years ago) represents a new lineage of mammaliaforms, the extinct groups more closely related to the living mammals than to nonmammaliaform cynodonts. It has an enlarged cranial cavity, but no postdentary trough on the mandible, indicating separation of the middle ear bones from the mandible. This extends the earliest recor...
متن کاملThe Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells
Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...
متن کاملO-44: Characterisation of Monotreme CaseinsReveals Lineage Specific Expansion of an AncestralCasein Locus in Mammals
Background: One important reproductive characteristic of Mammals is the production of milk to nurse the neonate. In order to better understand the evolution of milk we have investigated gene expression in milk cells from monotremes which are the most ancient representative of the mammalian lineage. Materials and Methods: Using a milk cell cDNA sequencing approach we characterise milk protein se...
متن کاملCentral effect of mammalian oxyntomodulin on food intake in non-fasted and fasted chicks
Oxyntomodulin (OXM), a proglucagon-derived peptide, is a well known anorexigenic peptide found inthe gut and brain of mammals. The present study was carried out to investigate the central effect of OXM onfood intake in non-fasted and fasted Ross broiler chicks. At four weeks of age, a guide cannula wasstereotaxically implanted into the right lateral ventricle of each bird. Two experiments were ...
متن کامل